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The Natural Flow Paradigm
scientific or unscientific?

e Natural flow paradigm

— Variation is important

— Evolution argument is tautological

2000  We are not smart enough to understand why

historical flow regimes are important, but we
know they are best.

2010 e Are all deviations equally bad for fishes?




The Science-based Flow Paradigm

Which aspects of natural or regulated flow
regimes are ecologically important?

* Quantify cause-effect relationships

e |dentify pathways and features of flow under selection
* Assign value to ecological effects

e Design decision tools to consider ecological values of
alternative flow regimes
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No simple relationship between
salmon production and flow
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Now and Then
Tuolumne River fall Chinook salmon

Jager and Rose 2003 This study

Flow regime 2-week constant Weibull model for fall and

(decision variables) spring pulse flow

Habitat WUA by riffle, pool-run Overbank flow = floodplain
Density dependence, inundation=>» growth
scouring/dewatering redds

Temperature Important driver of Important driver of
development, growth, and development, growth, and
survival survival

Salmon model IBM & SEPM coded in Quantile model coded in R
FORTRAN

Processes Predation, bioenergetics, Bioenergetics, movement
movement

Optimization Simulated annealing Evolutionary algorithm

( months of clock-time) (days of clock-time)




Cumulative redds
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Overbank flow, floodplain, feeding
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Weibull pulse-flow model
fall and spring
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e Specify total annual flow
e Five parameters describe flow regime

- Steepness

- Fall pulse start date

- Fall duration

- Spring pulse start date
- Spring pulse duration



Temperature-mediated effects
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e Most important
parameter in
sensitivity analyses

* Modified thermal
regime below dams

low flow

' high

dam 10
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Simulate Salmon Production
Incubation, juvenile rearing & production

 Functions of temperature
— Egg, alevin development
— Egg, alevin survival

— Juvenile growth (also weight,
ration = f(floodplain inundation))

— Juvenile survival (also length)

* Production is a product of survival through
lifestages

 Quantiles weighted to evaluate objective function



Optimization

|dentified pulse flow parameters that maximized
fraction of eggs surviving to become smolt

Evolutionary algorithm maximized salmon
production per egg

Integer problem, 10,000 ‘individuals’ (parameter
combinations) per generation.

Results presented for median total annual flow
Optimum achieved after 8 generations



Optimal flow regime
60%ile, 489 hm3y! (avg 15 cms d! )

Best flow regime = 6.45% survival of eggs 5=
- fitness=0.0645 g
- steepness=15
- JdayFall =326
- JdelFall =22
- JdaySpr=94
- JdelSpr =19

1.31% produced by corresponding flat flow

regime (top, dashed)

Both optimal pulse flows inundated

floodplains (tOp, ) 50 0020 20 X0 3

Optimal pulse flows have broad peaks

Optimal fall pulse later than expected Cson | -
(moderating winter temperatures?) S 2000 /
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Temperature, location, & size of juvenile quantiles
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Patterns in survival

by quantile

e Early redds had an
advantage during two
periods.

* For late redds, those closer
to the dam fared better

than those farther
downstream.

e Compared with a flat 15
cms flow regime, alevin
survival is notably higher.
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OPERATIONS
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PLANNING OBJECTIVES
>< & > < & _
FORECASTING POLICY

Issues and Inputs:

»determination of relative values
»determination of priorities

»operating agency agreements and boundaries
»defining energy and water markets
»defining mitigation markets

»data (meteorologic, hydrologic, plant and
machine condition, power system status)
Optimization Features:

»scalar or vector objective function
»real-time, short-term, long-term

»future values of water and energy
»deterministic or stochastic

»implementation of objectives and constraints
> historical or synthetic time series input
»solution algorithm (LP, GP, DP)
»optimization software (e.g. RiverWare, Vista,
CHEOPS)

Supporting Models:

»ecologic

»meteorologic

»hydrologic

»hydraulic & hydrodynamic

»power system

»economic

Supporting Technology
»advanced hydroturbine designs (aerating and
fish-friendly)

»advanced flow measurement systems

Energy Supply Objectives

Annual Energy Production
Peak Energy Output
Annual Revenue

System Stability

Shaping and Firming
O&M Cost Control

Ecological Objectives

Sustainability

Fish Passage, Entrainment
Populations

Habitat Protection

Water Quality

Minimum Flows

Water Supply Objectives

Thermoelectric Cooling Water
Municipal Water Supply
Industrial Water Supply
Agricultural Water Supply

Non-Power Objectives

Flood Control
Navigation
Recreation




How to compare benefits of flow
to salmon and energy?

Ecological valuation has
been used to assign value
to fish populations.

Meta-analysis of
contingent valuation
studies of salmon

Coauthors: Rebecca
Efroymson, ‘Debo Oladosu

Data provided by J. Loomis
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n=$%$2.34 x 106
a=%$141.96
B =0.1485
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Valuation model

MV(z) = H'(z) + P'(x)

H'(2) 0,z <x*
*= f, x> x*
P'(a:)zoze_ﬁx

MV = Marginal value (1,000 fish)

H = Marginal use value (harvest)

P = Non-use value (preservation)

x* = Estimated threshold population
size below which harvest value is zero



The Frontier
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Figure 8. Relationship between ORCM-simulated generation and cumulative river flow over the 330 days
simulated by the ORCM model in each year. Source: Jager and Sale (2006)
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Energy value
Modified from Polasky et al. 2008

« Benefits of flow for salmon & hydropower are broadly aligned

« Differences in the value of flows at different times may produce trade-offs
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Summary

FLOW —— RIVER HABITAT —— | POPULATION — | ECOLOGICAL VALUE
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New tool for assessing seasonal flow benefits to salmon
Designed to incorporate known benefits of overbank flows
Indirect vs. direct pathways linking flow and salmon

Can be used to evaluate habitat-for-flow substitution options
Regulate flows for both ecological & energy objectives
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