National Hydropower Asset Assessment Program (NHAAP)

What:
- A core geospatial energy-water database
- A core hydropower project configuration and production database
- Dynamic linkages to multiple agencies and federally-chartered energy-water-ecology data products

Who
- Authorization, funding, and guidance from DOE
- NHAAP team of hydropower engineers, aquatic ecologists, environmental assessment professionals, and geospatial analysts to validate, integrate, maintain, and disseminate information
- Federal agency partners whenever possible, including Reclamation, Corps, and USGS

84,000 Dams
17,000 Stream gages
5,116 Hydroelectric Units
1,200 Climatology Stations
The U. S. Hydropower Fleet

Legend
Capacity
- 0 - 100 MW
- 100 - 500 MW
- 500 - 1500 MW
- 1500 - 3000 MW
- 3000 - 6809 MW

Build Time
- pre 1900
- 1900 - 1929
- 1930 - 1939
- 1940 - 1949
- 1950 - 1969
- 1970 - 1989
- 1990 - 2008

Map information was compiled from the best available sources. No warranty is made for its accuracy and completeness.
Sources: National Inventory of Dams, 2010

U.S. Hydropower Assessment - Annual Meeting 2011
U.S. Hydropower – 2011 Status

Rated Capacity
- Non-Fed 57 GW
- Corps 21.6 GW
- Reclamation 15.1 GW
- TVA 5.2 GW

Number of Units
- Non-Fed 4,370
- Corps 432
- Reclamation 198
- TVA 116

Technology
- Francis 51 GW
 - 19 GW
 - 720 Units
- Kaplan 19 GW
 - 2.6 GW
 - 330 Units
- Other 26 GW
 - 1,501 Units
- Pelton 2.6 GW
 - 330 Units

Size (Capacity) Distribution
- Not Shown: Bath County (VA) 6@477 MW
- Shown: Grand Coulee (WA) 3@600 MW, 3@805 MW
The Energy-Water-Environment Context for National Hydropower Assessments

Integrated energy-water-environmental planning is a key to success!
Hydropower Assessment & Development

Scale
Users & Uses
Policy Analysis
Research Programming
Transmission Planning
Environmental Planning
Generation Planning
Project Developers
Site-Specific Feasibility
Technology Deployment
Project Developers

Clarity
Modeling & Remote Sensing
Increasing Detail
Decreasing Uncertainty
Site-Specific Assessment

Roles
Government
Industry
Classification of Hydropower Assets & Opportunities

<table>
<thead>
<tr>
<th>Hydropower Resource Class</th>
<th>DOE Water Power Effort</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Assets</td>
<td>National Hydropower Asset Assessment Project (NHAAP) includes all FERC-licensed,</td>
<td>• Asset configuration, monthly production, water availability, and power</td>
</tr>
<tr>
<td></td>
<td>Corps, Reclamation, and TVA hydropower facilities.</td>
<td>system context database assembled in 2010.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Environmental, cost, and economic modules integrated in 2011.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Public data portal mid-2011.</td>
</tr>
<tr>
<td>Upgrades & Expansions</td>
<td>• Hydropower Advancement Project (HAP) will assess potential for increased</td>
<td>• Interim 2009 assessment</td>
</tr>
<tr>
<td></td>
<td>generation through efficiency improvements and uprates at 50 projects nationwide</td>
<td>• Best Practices Catalog</td>
</tr>
<tr>
<td></td>
<td>• Expansion study criteria TBD</td>
<td>• Assessment Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nationwide Opportunity Summary 2012</td>
</tr>
<tr>
<td>Non-Powered Dams</td>
<td>**Assess the amounts of new hydropower energy resources potential in existing</td>
<td>• March FY11 – Generation & Capacity Summary for US Non-Powered Dams</td>
</tr>
<tr>
<td></td>
<td>non-powered dams (H>10 feet).</td>
<td>• Mid FY11 – NPD Database available via NHAAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Late FY11 – Cost and Supply Curve Report for US Non-Powered Dams</td>
</tr>
</tbody>
</table>
Classification of Hydropower Assets & Opportunities

<table>
<thead>
<tr>
<th>Hydropower Resource Class</th>
<th>DOE Water Power Effort</th>
<th>Products</th>
</tr>
</thead>
</table>
| **Pumped Storage** | Identify the readily developable potential for new large scale (>100MW) pumped storage hydropower facilities. | • FY11 - Baseline Assessment of existing and proposed PSH
• New Engineered cost study for existing pumped-storage facility |
| **Constructed Waterways** | Assess technically feasible energy generation related to different classes of constructed waterways | • FY11 Demo of Irrigation System Opportunities Assessment (INL) |
| **New Sites** | Assess energy resource potential from new, low-impact hydropower facilities. | • FY12 activity TBD |
Pumped-Storage Hydropower Challenges:

- Technical?
- Economic and financial?
- Policy?
- All of the above?
Non-Powered Dam Potential: 12.6 GW at 54,000 Dams
Non-Powered Dam (NPD) potential is concentrated:

The NPD Top 10:
• 3 GW at Corps of Engineers Facilities
 • 4 Ohio River Dams
 • 1 Mississippi River Facility
 • 1 Alabama River Facility
 • 2 Tombigbee River Facilities
 • 1 Arkansas River Facility
 • 1 Red River Facility

The NPD Top 100 includes 8 GW
• Including 81 Federal (Corps) facilities

260 MW at Reclamation facilities

In Construction:
• Cannelton: 2-unit (44 MW)
• Smithland: 2-unit (48 MW)
• Meldahl: 3-unit (111 MW)

In Planning or Design:
• Willow Island: 3-unit (84 MW)
• RC Byrd: 3-unit (76 MW)
NHAAP Preliminary Environmental Assessment of Non-Power Dam Potential

Most non-powered dams and potential capacity can be developed outside of critical habitat, parks, and wilderness areas.
Non-Powered Dam Potential With Other Renewables

- Non-Powered Dam Potential exists in areas with less than ideal wind and solar resources

- Water availability, particularly for regulated rivers, is NOT correlated with wind and solar availability (combined firming of capacity)

Wind & Solar Maps: NREL
Next Steps and Summary of Non-Powered Dam Efforts

• Improvements in Methodology (FY11)
 – Refined seasonal/monthly flow statistics, flow-duration analysis
 – Refine gross and net head computations for Top 100
 – Intelligent penstock diversion model for mountainous regions

• Feasibility Assessment (FY11)
 – Fact-based environmental data overlays and statistics (Critical species, Impaired streams, …)
 – Updated cost estimators for powerhouse construction

• 3 GW at the Top 10; 8 GW at the Top 100
 – What are the policy and process barriers to development of these concentrated resources?
Acknowledgments and Credits

National Hydropower Asset Assessment Project Team
Oak Ridge National Laboratory

Boualem Hadjerioua, Ph.D., Hydropower Engineer
Shih-Chieh Kao, Ph.D., Statistical Hydrologist
Yaxing Wei, Ph.D., Geospatial Analyst
Suresh K. SanthanaVannan, Informatics Specialist
Harold A. Shanafiel III, Database Management
Ranjeet Devarakonda, Interface Development
Dale P. Kaiser, Research Climatologist
Maria G. Martinez, GIS Analyst
Rocio Martinez, Ph.D., Resource Economist
Henriette Jager, Ph.D., Fisheries Biologist
Mark S. Bevelhimer, Ph.D., Fisheries Biologist
Glenn F. Cada, Ph.D., Fisheries Biologist
Michael Starke, Ph.D., Power Systems Engineer
Shelaine Hetrick, PMP, Operations Manager
Brennan T. Smith, Ph.D., P.E., Program Manager & Water Resources Engineer

DOE Water Power Program:
Michael Reed, Chief Engineer
Hoyt Battey, Market Acceleration Leader
Rajesh Dham, P.E., Technology Development Leader
Alejandro Moreno, former Technical Leader

Idaho National Laboratory
Doug Hall, Water-Energy Program Manager

Consultants
Michael J. Sale, M.J. Sale & Associates
Norman Bishop, Knight Piesold
James Parham, Parham & Associates

Thanks to these hydropower industry reviewers and commenters:
Linda Church-Ciocci, NHA
Jeff Leahey, NHA
Andrew Munro, NHA/GCPUD
Rick Miller, HDR | DTA
Dave Culligan, HDR | DTA
Don Erpenbeck, MWH
Eric Van Deuren, Mead & Hunt
Comments and inquiries:

Brennan T. Smith
Program Manager
Water Power Technologies
Oak Ridge National Laboratory

P. O. Box 2008
Oak Ridge, TN 37831-6036
(865) 241-5160
smithbt@ornl.gov