Many bacteria living in contaminated environments possess a mercury resistance (mer) system, which is regulated by MerR.

Combined experimental (small-angle X-ray scattering, SAXS) and computational (molecular dynamics, MD) studies were used to determine the structure and dynamics of MerR bound to mercury.

MD simulation results agree well with SAXS experiments (top right) and provide atomic detail.

Simulations reveal large-amplitude domain opening-and-closing of mercury-bound MerR (bottom right).

Domain motions in MerR are thought to play an important role in initiating DNA transcription of mercury resistance genes in the presence of nanomolar levels of mercury in bacterial cells.
Understanding the mechanism of bacterial mercury resistance. Scientists at Oak Ridge National Laboratory have used a combined experimental and computational approach to determine the structure and molecular dynamics of a critical component of mercury resistance—the metalloregulator MerR—when mercury binds to it. The studies used small-angle X-ray scattering and molecular dynamics simulations to provide clues on how a single mercury ion can induce a significant change in the structure of MerR. This structural change turns on DNA transcription of the genes for several other proteins and enzymes, which ultimately rid the microbes of toxic mercury species.

This work is published in the April 15 issue of the Journal of Molecular Biology.