Ecological Lessons From Free-Air CO₂ Enrichment (FACE) Experiments

Contact: Richard Norby, 865-574-5261, rjn@ornl.gov Funding: DOE Office of Science, Biological and Environmental Research

- Our understanding of the ecological mechanisms controlling carbon cycling and storage in forests was advanced because of DOE investments in FACE research. The lessons from that decades-long research program have just been summarized in a high-profile article in Annual Review of Ecology, Evolution, and Systematics.
- Those lessons include:
 - Carbon cycle responses are time-dependent. A key example: net primary productivity is increased by elevated CO₂, but the response may be diminish with time.
 - Carbon partitioning patterns determine the fate of the extra C taken up by CO₂-enriched plants (leaves vs. wood vs. roots and soil). The understanding of such patterns must be captured by models.
 - The influence of N cycling on plant and ecosystem C cycling continues to be a critical uncertainty. Predictive ecosystem models demand dynamic and interactive carbon and nitrogen cycles.
 - The structure of the plant community can influence the response of the ecosystem to elevated CO_2 . Future experiments should incorporate dynamic vegetation effects through experimental design and modeling.
- FACE experiments have provided a strong foundation for the next generation of experiments to be carried out in unexplored ecosystems and those with greater ecological complexity.

Citation

Norby RJ, Zak DR (2011) Ecological lessons from free-air CO₂ enrichment (FACE) experiments. *Annual Review of Ecology, Evolution, and Systematics* 42:181-203.

