Efficient Greenhouse Gas Emission Banking and Borrowing Systems

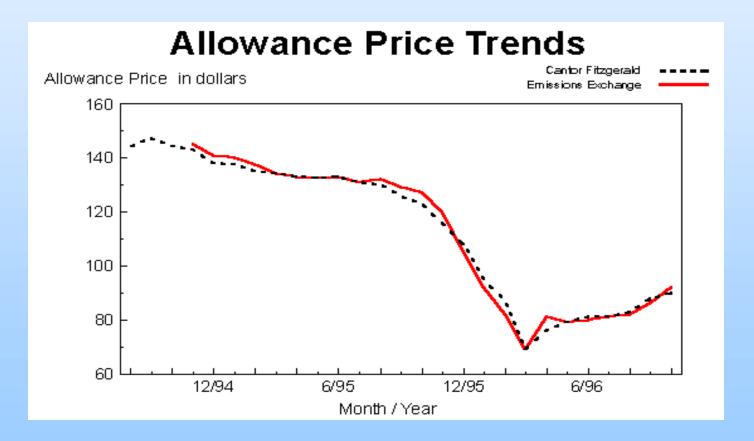
"I Will Gladly Pay you Tuesday for a GHG Permit Today" Paul Leiby and Jonathan Rubin, July 1 1998

Structure of Presentation

- Stock vs. Flow Pollutants
- Permit Trading and Banking
- Cooperative Emissions Abatement
- Implications for Banking Regime Design
- Numerical Estimates and Policy Implications

Stock and Flow Pollutants

• Flow Pollutants:


- » Damages nearly coincident with emissions
- » E.g.: Noise
- Stock Pollutants:
 - » Accumulate and decay over time
 - » Damages stem from accumulated stock
 - » E.g.: CO₂
- Difference often matter of degree.

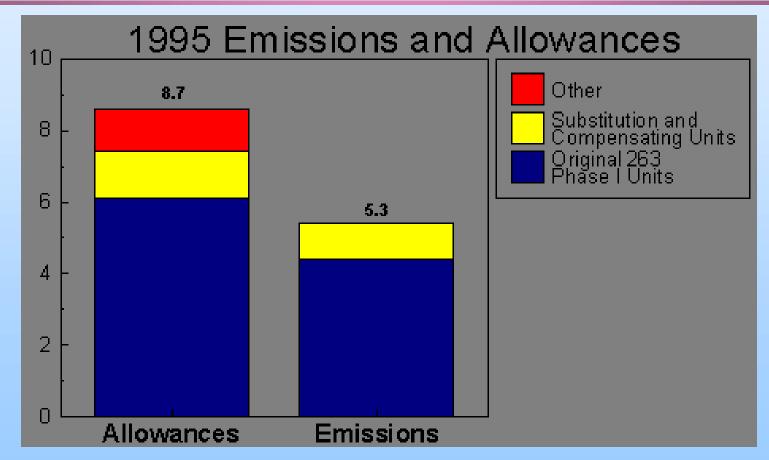
Permit Trading Promotes Efficiency

- Established result for flow pollutant
 Montgomery (1972)
- Literature on marketable permits
 - » Market Power (Hahn 1984)
 - » Enforcement (Malik 1992)
 - » Regulated indust. (Coggins & Smith 1993)
 - » Bilateral, sequential trading (Atkinson & Tietenberg 1991)

» Optimality of incentives (Oates et al. 1989) Leiby and Rubin

SO₂ Permits Actively Traded

 Source: U.S. EPA, Acid Rain Division's Home Page, Allowance Tracking System (ATS) Data (http://www.epa.gov/docs/acidrain/update2/chart3.html), 2/15/97


Leiby and Rubin

New! Permit Banking

Banking = Intertemporal Permit System
 Regulatory applications and examples

 Acid rain program (banking)
 CAFE credits (bank and borrow 3 years)
 California tailpipe HC (bank)
 Lead in gasoline (bank)

Banked SO₂ Permit Inventories

 Source: U.S. EPA, Acid Rain Division's Home Page, Allowance Tracking System (ATS) Data (http://www.epa.gov/docs/acidrain/update3/emsallws.gif), 2/26/97

Leiby and Rubin

Permit Banking for Flow Pollutant

• Research on properties

- » Biglaiser et al (1995), Cronshaw & Cruse (1996), Rubin (1996)
- Kling and Rubin (1997) essential conclusion
 - » Banking/borrowing not necess. efficient
 - » Equalizes discounted marg control costs
 - » Firms "borrow" given non-increasing costs (and non-decreasing standards)

Leiby and Rubin

For a Stock Pollutant, Banking Trickier

- Stock Pollutants = durable externalities
- Optimal Marginal Damages Likely to Vary Over Time
- Implications for Efficient Banking Regimes:
 - » Unrestricted Trading Inefficient
 - » Need modified banking/trading regime

Other Research on Banking

- Kruse and Cronshaw 1998 (theory and experiment)
- Toman and Palmer 1997 (accumulative pollutants)

Grand Application: GHG Emission Rights

- Trading envisioned under Kyoto Protocol
- US FCCC Draft Protocol Promoted Borrowing (State Dept 1997)
 - » Emit more in 2000
 - » Pay back with interest in 2010 or later

Global Cooperation Approach

- Key assumption: joint/cooperative objective function
- - » Useful for exploring potential coordination gains
- Alternative cooperative solution is Pareto Optimum, given individual objectives (e.g. Chichilnisky and Heal 1997, Nordhaus 1996)

Leiby and Rubin

Cooperative Objective Function

$$J^{*} = \max_{\substack{a_{1} \cdots a_{N} \\ y_{1} \cdots y_{N} \\ s.t:}} \int_{0}^{T} d(t) \left(\int_{0}^{y(t)} P_{y}(z) dz - \sum_{i=1}^{N} C_{i}(y_{i}, e_{i}, t) - D(e, S, t) \right) dt - d(T)F(S(T))$$

$$S(t) = e(t) - gS(t)$$

$$Y_{i}(t) \ge 0, e_{i}(t) \ge 0$$

$$e = \sum e_{i}, y = \sum y_{i}$$

Max disc value of output minus control cost and damages

Cooperative Emissions Control Solution

Stock and Flow Pollutant Case
Eqn for opt abatement effort C_a*:

$$C_a^* - \frac{1}{\mathbf{r} + \mathbf{g}} \frac{dC_a^*}{dt} = D_e^* + \frac{1}{\mathbf{r} + \mathbf{g}} \left(D_S^* - \frac{dD_e^*}{dt} \right)$$

 C_a = marginal abatement cost

 D_e = marginal flow damage

 D_S = marginal stock damage

 γ = stock decay rate

 ρ = discount rate

Cooperative Solution: Interpretation

- Current and future abatement costs balanced against current and NPV future damages
- Can solve differential equation for C_a^* :

$$C_{a}(t) = D_{e}(t) + \bigcup_{t}^{T} (\mathbf{r} + \mathbf{g})(t - t) D_{s}(t) dt + e^{-(\mathbf{r} + \mathbf{g})(T - t)} F_{s}(T)$$

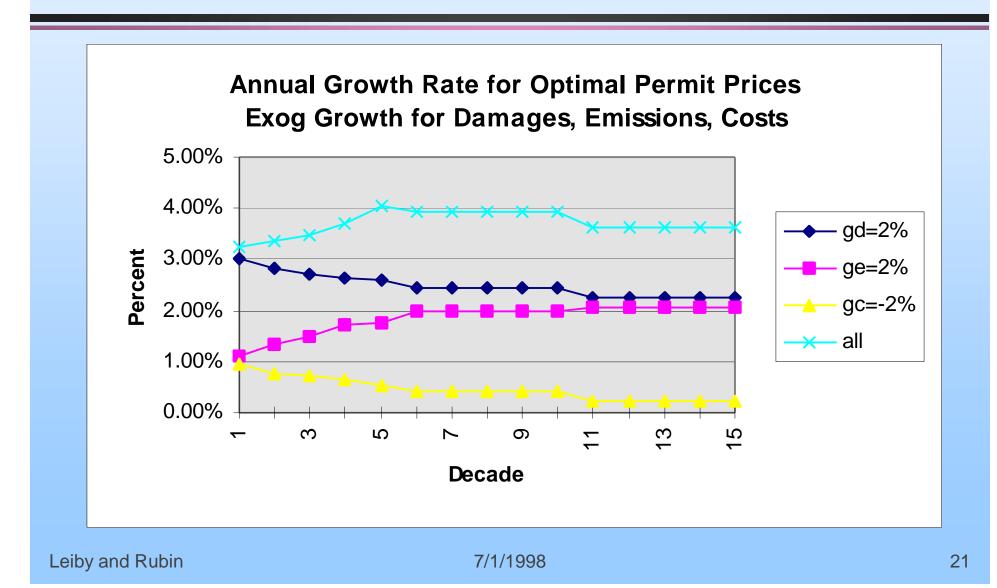
 Marg control costs = current marg flow damages + "NPV" future stock damages

Establishing the Interest Rate on Bank Accounts

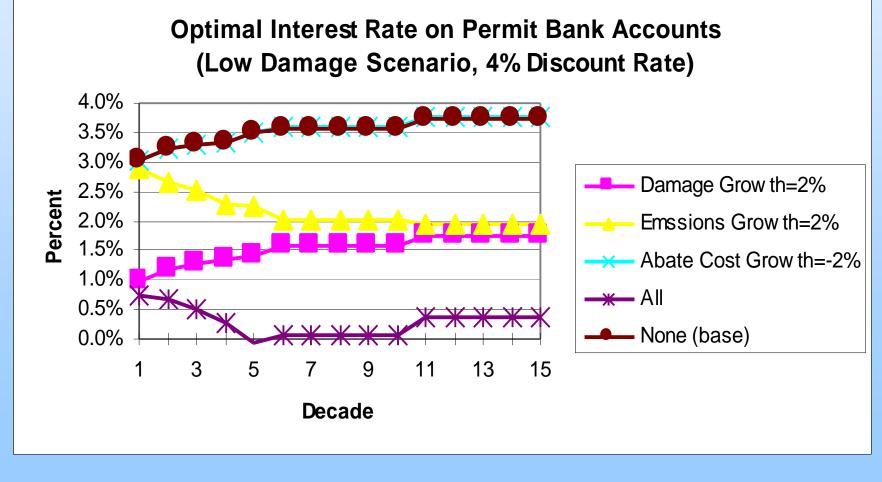
- Total # permits determines price level
- Banking/Borrowing determines permit price <u>path</u>
- For each agent, permit prices determine
 - » Marginal abatement effort
 - » Hence, emissions level
- To get efficient marginal abatement path: Set bank account interest rate

Stock-pollutant Only Case

• Efficient interest rate r_e depends on marginal stock damages, marginal abatement costs, and stock decay rate $r_e^* = \frac{D_S^*}{C_a^*} \cdot g$ $r_e^* = \frac{D_S^*}{r_e^*} \cdot g$ $r_e^* = \frac{D_S^*}{r_e^*} \cdot g$

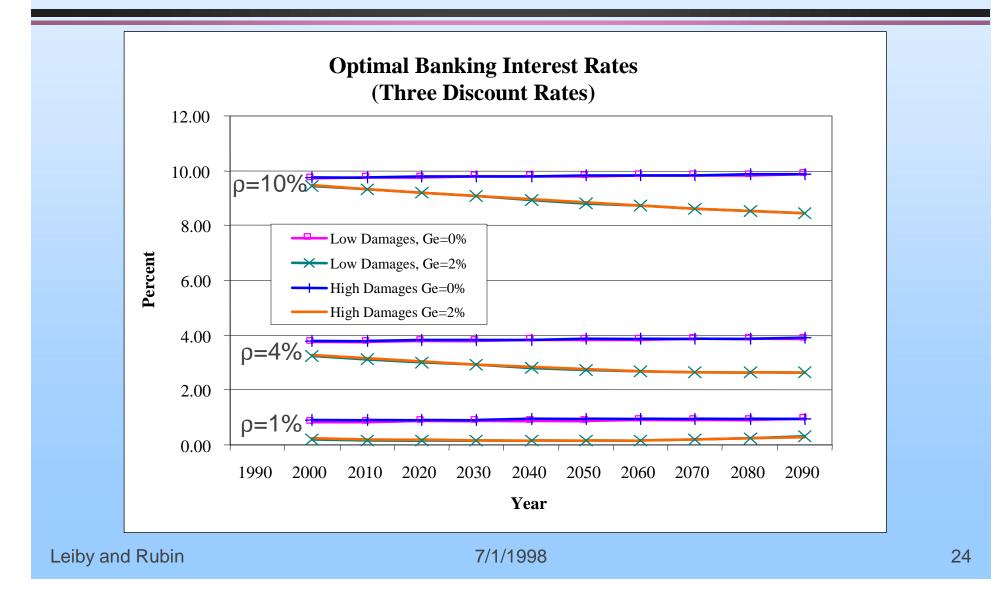

Stock Pollutant - Summary

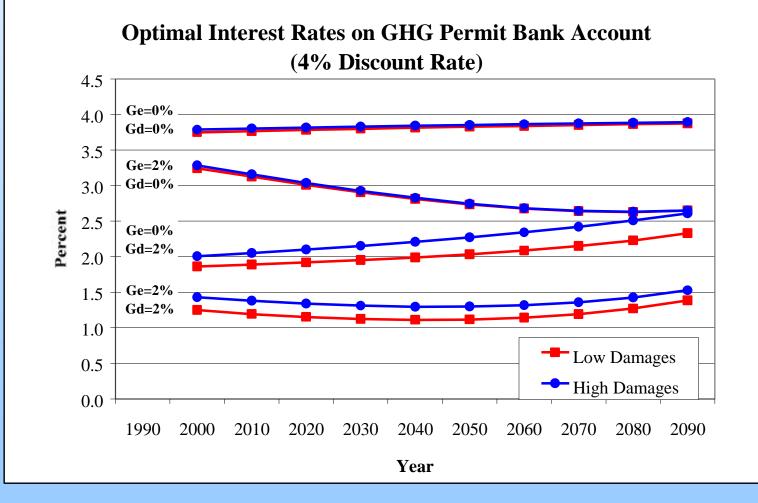
 Social Optimum $C_a^*(t) = \int e^{-(r+g)(t-t)} D_s^*(t) dt + e^{-(r+g)(t-t)} F_s(T)$ Private Optimum, with Trading $C_{a}^{**} = P_{a}$ Market Outcome, with Banking $\frac{dP_e}{dt} \Big/ P_e \equiv \hat{P}_e = i - r_e$ (due to arbitrage)


Numerical Values and Policy Implications

- Seek plausible numerical values
 US proposing to pay interest of 20%/decade
- Is this number high or low?

Falk & Mendelsohn Ests


F&M Implied Opt Banking Rates


Borrowing and Technology Change

 Technological advances in emission abatement and damage mitigation, ceteris paribus, justify borrowing relative to a constant level of emissions reduction

Optimal Interest Rates on GHG Permit Bank Accounts

Optimal Banking Interest Rates: Sensitivity Cases

Leiby and Rubin

General Insights on Banking Systems: I

Yield private optimality conditions matching traditional trading systems
Add restriction on time path of permit prices

General Insights on Banking Systems: II

Unrestricted/free banking

- » Authority controls only one market outcome
- » Discounted permit price constant
- Specification of interest rate
 - » Controls 2nd outcome, rate of price increase
 - » Seek to match price path to damage path
 - » Interest rate could be time-variant

Proposed Future Work

- Numerical Estimates With Climate Model
- Bargaining outcome, vs. cooperative
- Uncertainty:
 - » regarding permit prices
 - » regarding abatement costs