Permeation of Mercury Through a Bacterial Cytoplasmic Membrane

Challenge

• Cellular uptake and export from the aqueous environment are important steps in Hg biotransformation by microorganisms, but the mechanisms of transport across biomembranes remain unclear.

Approach and Results

- Performed extensive molecular dynamics simulations of passive permeation of Hg^{II} and methylmercury complexes with thiolates.
- Calculated permeability coefficients for the neutral compounds CH₃S–Hg^{II}–SCH₃ and CH₃Hg–SCH₃ are ~10⁻⁵ cm/s.
- Small, neutral Hg compounds readily permeate cytoplasmic membranes.

Significance and Impact

 Identifying how complexation of Hg^{II} and methylmercury alters permeation provides insight into how Hg is transported in and out of bacterial cells.

Reference: Zhou J, Smith MD, Cooper SJ, Cheng X, Smith JC and Parks JM. **Modeling of the Passive Permeation of Mercury and Methylmercury Complexes Through a Bacterial Cytoplasmic Membrane**, *Environ. Sci. Technol.*, **2017**, In press. **DOI:** 10.1021/acs.est.7b02204

Participants:

Jing Zhou (UTK) Micholas D. Smith (UTK/ORNL) Sarah J. Cooper (UTK) Xiaolin Cheng (ORNL) Jeremy C. Smith (UTK/ORNL) Jerry M. Parks (ORNL)

Contact: parksjm@ornl.gov

ABSTRACT:

Cellular uptake and export are important steps in the biotransformation of mercury (Hg) by microorganisms. However, the mechanisms of transport across biological membranes remain unclear. Membrane-bound transporters are known to be relevant, but passive permeation may also be involved. Inorganic Hg^{II} and methylmercury ($[CH_3Hg]+$) are commonly complexed with thiolate ligands. Here, we have performed extensive molecular dynamics simulations of the passive permeation of Hg^{II} and $[CH_3Hg]$ + complexes with thiolate ligands through a model bacterial cytoplasmic membrane. We find that the differences in free energy between the individual complexes in bulk water and at their most favorable position within the membrane are ~2 kcal mol⁻¹. We provide a detailed description of the molecular interactions that drive the membrane crossing process. Favorable interactions with carbonyl and tail groups of phospholipids stabilize Hg-containing solutes in the tail-head interface region of the membrane. The calculated permeability coefficients for the neutral compounds CH₃S- Hg^{II} -SCH₃ and CH₃Hg-SCH₃ are on the order of 10⁻⁵ cm s⁻¹. We conclude that small, non-ionized Hg-containing species can permeate readily through cytoplasmic membranes.