The Effect of Soil Properties on Toxic Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

> Mark Barnett Ph.D. Department of Civil Engineering 208 Harbert Engineering Center Auburn University, AL 36849-5337 Phone (334) 844-6291

Amy Hawkins Naval Facilities Engineering Service Center 1100 23rd Ave Port Hueneme, CA 93043 Phone (805) 982-4890

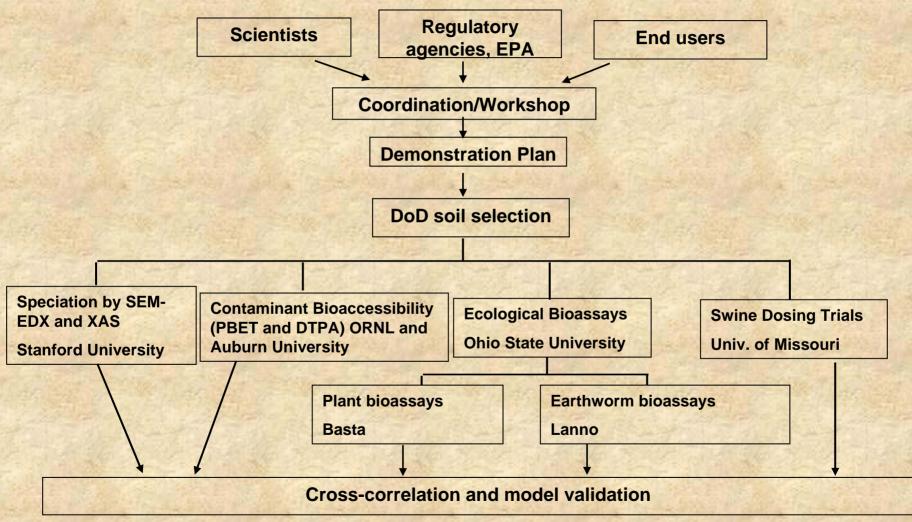
Background

- Project funded by ESTCP for FY05 FY07
- Capitalizing on previous research by taking two completed SERDP projects to the demonstration phase
 - CU-1166 Quantifying the Bioavailability of Toxic Metals in Soils (Barnett, Fendorf, Jardine)
 - CU-1210 Determining the Bioavailability, Toxicity, and Bioaccumulation of Organic Chemicals and Metals for the Development of Eco-SSLs (Basta, Chekai, Kuperman, Lanno)

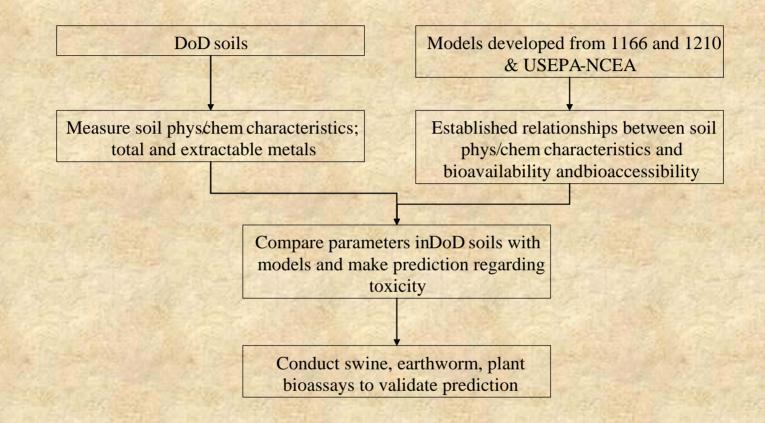
Problem Statement

- Toxic metals As(III/V), Cr(III/VI), Cd, and Pb exist at thousands of DoD sites
- By default As, Cr, and Cd are assumed to be 100% bioavailable in human health and ecological risk assessments
- Need to be able to determine appropriateness of:
 - In vivo studies
 - Excavation/Removal
 - Soil stabilization technologies

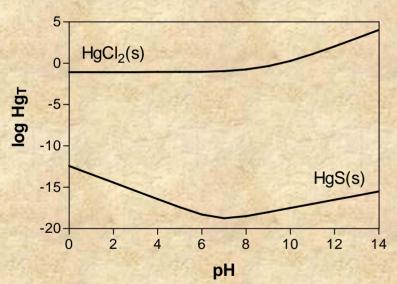
Problem Statement

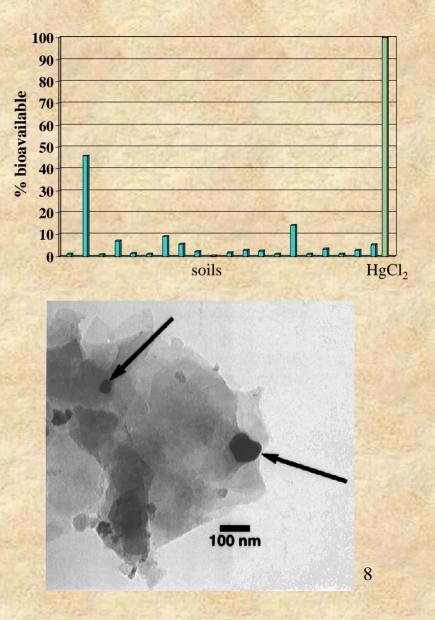

- Metal sequestering properties of soil can significantly lower or alter the bioavailability and risk to human and ecological receptors
- *In vitro* bioaccessibility, *in vivo* swine metal bioavailability, and molecular-level metal speciation studies all suggest that key soil properties control metal bioavailability
- Models to help predict metal bioavailability and toxicity can be developed based upon these key soil properties

Objectives


- Demonstrate how soil properties can be incorporated into a screening tool to help predict bioavailability and toxicity of As, Cd, Cr, and Pb
- Demonstrate that *in vitro* methods can be used to prioritize sites, affect risk decisions, or justify *in vivo* studies
- Seek regulatory acceptance of *in vitro* methods and the Soil BioAccessibility Tool (SBAT) for initial human RA, and the suite of ecological metal bioavailability methods for ecological RA through validation studies with field-contaminated soils
- Demonstrate application of *in vitro* methods and SBAT screening to prioritize and justify site-specific studies that may significantly reduce cleanup costs

Methodology

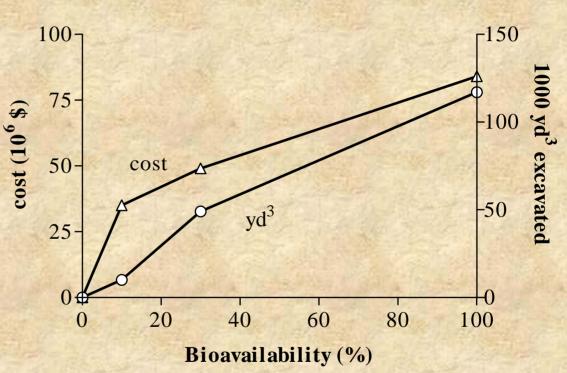

Methodology



Technology Maturity – Case Study

Remediation of Lower East Fork Poplar Creek (LEFPC) in Oak Ridge, TN, a Hg-contaminated CERCLA site in early 1990s.

In vitro bioaccessibility and speciation studies led to the adoption of a site-specific relative Hg bioavailability.


Technology Maturity – Case Study

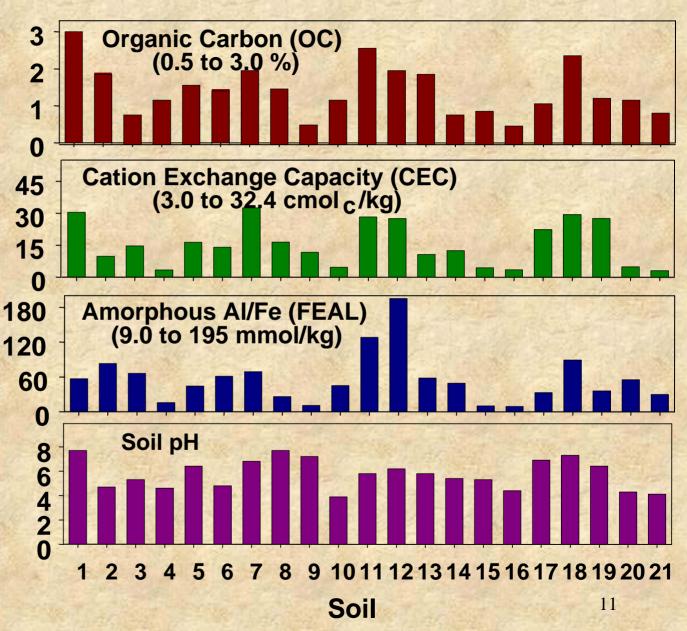
• Default bioavailability of 100% and RfD for HgCl₂.

– Cleanup level of 50 mg/kg.

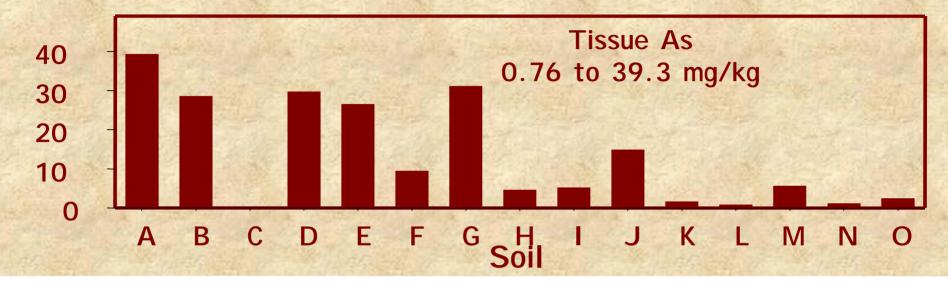
- Proposed relative bioavailability of 30% based on speciation and bioavailability studies.
 - Cleanup level of 180 mg/kg.
- After comments from the public, used bioavailability of 10%.
 - Cleanup level of 400 mg/kg.

9

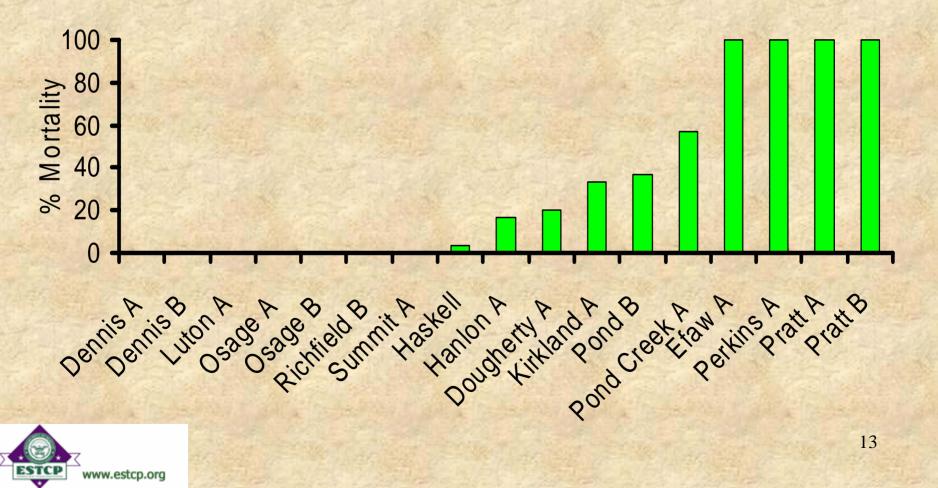
Technology Maturity – CU-1210


Soil Characterization

- •21 soils from 5 soil orders
- •Broad range in chemical properties associated with binding metal
- •Spiked with Cd 300 mg/kg as Cd $(NO_3)_{2,}$ 300 mg/kg Zn as $Zn(NO_3)_{2,}$ or 2000 mg/kg Pb as Pb $(NO_3)_{2,}$ 250 mg/kg As as Na_2HAsO_4
- <u>Lettuce Bioassay</u> (Lactuca sativa var, Paris Island Cos)
- •20 seeds per pot
- •Harvest at 40 days
- **Endpoints Measured**
- •Tissue metal
- •Dry matter growth


Technology Maturity – CU-1210

Range in soil Properties


Technology Maturity – CU-1210

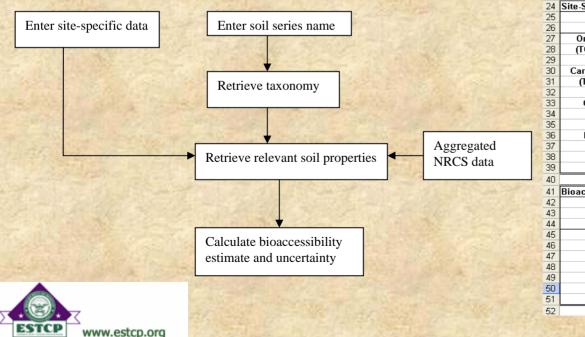
Results 250 mg As/kg

Technology Maturity – **CU-1210** Earthworm mortality in soils differing in physical/chemical characteristics, BUT all spiked with Pb (2000 mg/kg)

Technical Maturity – CU-1210 Cd bioaccumulation in earthworms: Total soil Cd or Ca(NO₃)₂ extract y = -0.2815x + 305.11(1350 300 9250 150 200 150 50 $R^2 = 0.0015$ Ca(NO3)2 extract y = 30.967x + 2.114Total $R^2 = 0.4402$ 0 8 0 Body Residue (mmol Cd/kg, dwt) 14 www.estcp.org

Technology Maturity – Swine Model

- Versatility--assess bioavailability of metals, inorganic, and organic compounds
- Surrogate for children, adults, and pregnant
 - Compare differences between ages & conditions
- Applicable to pharmaco-/toxicokinetic studies
- Identification of sites of accumulation
- Multiple responses to assess RBA
- Detection of untoward effects



Technology Maturity – SBAT

 Predictive model (SBAT) was developed under SERDP CU-1166 based on the correlation of soil physical and chemical properties with decreased metal bioaccessibility

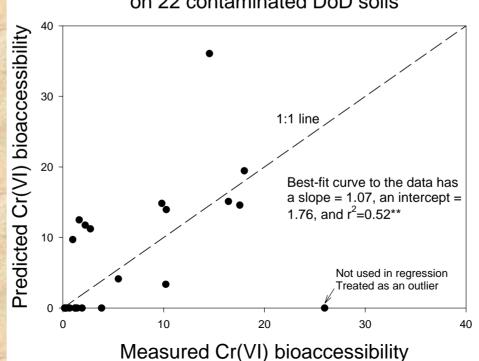
	A	в	CI	D	E
1	Bioaccessibility Tool:				
2					
3	Series:	Allen		Great Group	Paleudults
4	Jenes.	1 mon		near oroup	. aleddaits
5	Estimated Parameters				
6	Launateuralaineteis				
7	Horizon:		A B		
8		Value		Value	Coverage
9	Organic carbon	Turao	Concluge		contrage
10	(TOC) % weight	1.29	59.8	0.21	53.4
11	, , ,				
12					
13	(TIC) % weight	0.192	12.2	0.004	9.7
14					
15					
16	% weight	11.7	62.9	34.6	56.6
17					
18					
19	% weight	0.863	52.6	2.245	46.7
20					
21 22	pH SU	5.2	62.9	5.1	56.6
22	30	- 5 .2	62.9	5.1	0.00
	Cite Cu - iC - De				
24 25	Site-Specific Paramete	ers			
25 26	Horizon:		Α	E	,
20	Organic carbon		A		•
28	(TOC) % weight				
29	(roc) a weight				
30	Carbonate content				
31	(TIC) % weight				
32					
33	Clay content				
34	% weight				
35					
36	Iron content				
37	% weight				
38					
39	pH (SU)				-
40					
41	Bioaccessibility Estima	tes			
42					
43		Bi	oaccessibilit		
			A	B	
44	Cr (III)		15.5	28	.9
45	01 (iii)		1		
45 46					
45 46 47	Cr (VI)	:	22.9	41	.4
45 46 47 48	Cr (VI)				
45 46 47 48 49			22.9 30.4	41	
45 46 47 48	Cr (VI)	;			.6

Technology Maturity – PBET

The in vitro • bioaccessibility method Physiologically **Based Extraction** Test (PBET) has been shown to correlate with the in vivo method for As and Pb

Milestone I - Workshop

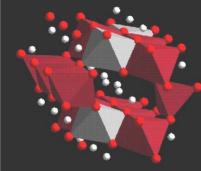
- 1 day workshop at project initiation
- State regulators, DoD end-users, EPA, federal agencies, scientists, and ITRC members
- Focus on past, current, and future research investigating soil metal bioavailability methodologies
- Focus on appropriate use of *in vitro* bioaccessibility to aid risk assessment
- Discuss end-user and regulatory needs for decision-making

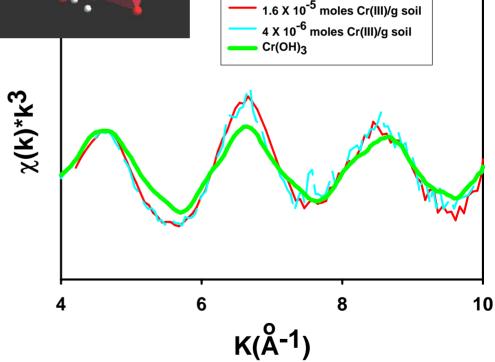

Milestone II – Site Selection

- Ten soil sites will be used for ecological bioassay studies, one contaminated sample and one control sample will be taken from each site
- Four sites will be included in the *in vivo* swine dosing studies
- Site selection will be drawn from DoD sites including 40 soil sites previously studied under SERDP
- Focus on obtaining a variety of soil types
 - Sandy, high pH with limited capacity to sequester As, excellent capacity to sequester Pb and Cd
 - Silty, neutral pH soils with good to excellent capacity to sequester metals
 - Acidic, Fe-oxide rich soils with excellent capacity to sequester As, and potentially poor capacity to sequester Cd, Pb, and Cr

Milestone III – In Vitro Assessment and Soil Properties Modeling Comparison

- Metal availability for plants and invertebrates modeled based on total metal levels and soil physical/chemical characteristics and measured using several wet chemical methods
 - Statistical relationships developed from a set of 26 soils (US EPA-NCEA, SERDP CU-1210) will be used for this estimate


ww.estcp.org

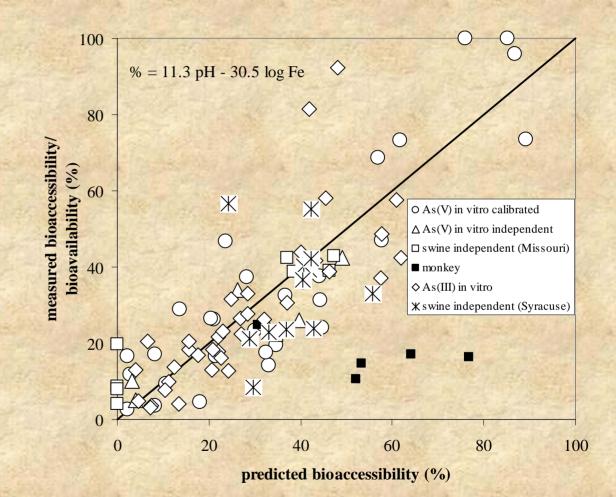

22

Measured versus predicted Cr(VI) bioaccessibility on 22 contaminated DoD soils

Milestone III – In Vitro Assessment and Soil Properties Modeling Comparison

• Mechanisms of enhanced metal sequestration and solid-phase metal speciation will be quantified using a variety of highresolution surface spectroscopy techniques

Milestone IV – In Vitro Assessment and In Vivo Assessment Comparison


- Ecological
 - Bioassays of earthworms and plants to determine metal toxicity
- Human Health
 - SOPs using the immature swine model will be followed to assess in vivo metal bioavailability
 - SOP has been used successfully to assess in vivo bioavailability of Pb and As

Milestone IV – In Vitro Assessment and In Vivo Assessment Comparison

- Hypothesis:
 Comparing *in vivo* and *in vitro* results
 and soil propertybased models will
 show that
 uncertainty related
 to the use of
 models is
 acceptable
- Models can be used for initial estimates of toxic metal bioavailability

Summary

- Decreased bioavailability due to soil properties must be accounted for in human health and ecological risk assessment
- *In vitro* and modeling methods developed through SERDP require demonstration of their ability to justify *in vivo* studies moving away from 100% bioavailability
- Up front regulatory and end-user involvement will promote rapid and complete technology transfer

