Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

Contact: Gangsheng Wang, 865-574-7615, wanggg@ornl.gov
Funding: LDRD Program of ORNL

Objective

• Provide well-documented enzymatic parameters for application in enzyme-driven soil organic carbon (SOC) decomposition models by compiling a database of kinetic parameters for typical ligninases and cellulases through a literature search and data synthesis.

New Science

• The maximum specific enzyme activity (V_{max}) was log-normal distributed, with no significant difference in V_{max} exhibited between enzymes originating from bacteria or fungi.
• Ligninases had higher activation energy (E_a) and lower optimum pH (pH_{opt}). An increase or decrease of 1.1–1.7 pH units from pH_{opt} would reduce V_{max} by 50%.
• V_{max} from lab measurements with purified enzymes were 1–2 orders of magnitude higher than those under field conditions.

Significance

• The developed kinetic parameters add to our understanding of key ligninolytic and cellulolytic enzyme kinetics essential for modeling the decomposition of plant litter and soil organic matter.