Report to Congress on the Potential Environmental Impacts of Marine and Hydrokinetic Renewable Energy Technologies

Environmental Effects of Marine & Hydrokinetic Energy Projects A Report to Congress Under EISA Section 633

Managed by UT-Battelle for the U.S. Department of Energy

Glenn Cada Oak Ridge National Laboratory

National Hydropower Association 2009 Annual Conference

May 13, 2009

Energy Independence and Security Act of 2007 (EISA)

Sec 633 (b). The Secretary of Energy, in conjunction with the Secretary of Commerce... and the Secretary of the Interior... shall provide to the Congress a report that addresses—

(1) the potential environmental impacts, including impacts to fisheries and marine resources, of marine and hydrokinetic renewable energy technologies...

`marine and hydrokinetic renewable energy' defined as following:

(1) waves, tides, and currents in oceans, estuaries, and tidal areas;

(2) free flowing water in rivers, lakes, and streams;

(3) free flowing water in man-made channels; and

(4) differentials in ocean temperature (ocean thermal energy conversion).

Explicitly excludes "energy from any source that uses a dam, diversionary structure, or impoundment for electric power purposes."

Outline of the EISA Environmental Report

- Introduction
- Description of the technologies

Wave energy

Current energy

Ocean thermal energy conversion

- Potential environmental impacts, minimization, and mitigation measures
- Monitoring and adaptive management

Current and Wave Energy Technologies

Energy Efficiency & Renewable Energy

Oscillating Hydrofoil (Stingray) Source: The Engineering Business

Horizontal Axis Turbine (DEEP-Gen) Source: Tidal Generation

Vertical Axis Turbine (Blue Energy Ocean Turbine) Source: Blue Energy

Ducted Horizontal Axis Turbine (Open-Centre Turbine) Source: OpenHydro

Submerged Pressure Differential (Archimedes Wave Swing) Source: AWS Ocean Energy

Overtopping (Wave Dragon) Source: Wave Dragon, Ltd.

Attenuator (Pelamis) Source: Pelamis Wave Power

Oscillating Water Column (OEBuoy) Source: Ocean Energy

Oscillating Wave Surge Converter (Wave Roller) Source: AW Energy

Point Absorber (AquaBuOY) Source: Finavera

Ocean Thermal Energy Conversion (OTEC)

How ocean power operates Electricity created Warm seawater 2 Saltless water vapour turns is converted into water turbine creating vapor by solar electricity 40°E 80°E 120°E 160°E 160°W 120°W 80°W 40°W 0°W energy 40°N Solar Turbine Evacuated energy evaporation 20°N chamber Equator Warm seawater 20°S 3 Water vapour 40°S condensed in chamber Temperature difference between surface and depth of 1000 m creating pure water Less than 18°C 22° to 24°C Cold seawater Condensing 18° to 20°C More than 24°C chamber 20° to 22°C Depth less than 1000 m • • • Waste Desalinated 5°C salt water water

Energy Efficiency &

Renewable Energy

Environmental Issues

- Alteration of currents and waves
- Alteration of substrates and sediment transport and deposition
- Effects of habitat alteration on benthic organisms
- Noise
- **Electromagnetic fields**

- Toxic chemicals
- Interference with animal movements or migrations
- Strike
- Impingement
- Effects of single units vs. cumulative effects of multiple units
- **Unique effects of OTEC**

Environmental Assessment, Monitoring, and Adaptive Management

> Assess problem Design Adjust Implement Complexity of the second s

7 Managed by UT-Battelle for the U.S. Department of Energy

EISA Report Approach and Schedule

- Literature Review
- Contacts with technology developers, regulatory agencies, resource agencies, academia, and non-governmental organizations
- Major input from NOAA and Department of Interior
- Draft reports for public and agency review, webinar
- EISA Report Due to Congress in June 2009
- Will be posted to www1.eere.energy.gov/windandhydro/

Energy Efficiency & Renewable Energy

Questions and Comments?

CAK CRIDGE

9 Managed by UT-Battelle for the U.S. Department of Energy