References

  1. Mason, R. P., E. H. Kim, J. Cornwell, and D. Heyes. 2006. “An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment.” Mar. Chem. 102: 96–110.
  2. Mason, R. P., C. L. Miller, C. C. Gilmour, and A. Heyes. 2002. “Factors controlling the production, fate and transport of mercury and methylmercury in sediments.” In American Chemical Society 223rd National Meeting. Orlando, Florida. American Chemical Society Press.
  3. Fitzgerald, W. F., and C. H. Lamborg. 1998. “Geochemistry of mercury in the environment.” In Environmental Geochemistry. EDs: H. D. Holland and Turekian, 107– 148. San Diego. Academic Press.
  4. Lindberg,  S. E., and W. J. Stratton. 1998. “Atmospheric mer cury speciation: concentrations and behavior of reactive gas eous mercury in ambient air.” Environ. Sci. Technol. 32: 49–57.
  5. Parks, J. M., A. Johs, M. Podar, R . Bridou, R . A. Hurt, Jr., S. D. Smith, S. J. Tomanicek,  Y. Qian,  S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, and L. Liang. 2013. “The genetic basis for bacterial mercury methylation.” Science 339 (6125): 1332– 1335. [DOI: 10.1126/science.1230667]
  6. Gilmour, C. C., M. Podar, A. L. Bullock, A. M Graham, S. D. Brown, A. C. Somenahally,  A. Johs, R. A. Hurt Jr., K. L. Bailey, and D. A. Elias. 2013. “Mercury methylation by novel microorganisms from new environments.” Environ. Sci. Technol.47 (20): 11810–11820. [DOI:10.1021/ es403075t]
  7. Gu, B., Y. Bian, C. L. Miller, W. Dong, X. Jiang, and L. Liang. 2011. “Mercury reduction and complexation by natural organic matter in anoxic environments.” Proc. Natl. Acad. Sci. USA 108 (4): 1479–1483. [DOI:10.1073/ pnas.1008747108]
  8. Hu, H., H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. B. Feng, D. A. Elias, L. Liang, and B. Gu. 2013. “Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria.” Nature Geosci. 6: 751–754. [DOI:10.1038/NGSO1894]
  9. Zhou,  J., D. Riccardi, A. Beste, J. C. Smith, and J. M. Parks. 2013. “Mercury methylation by HgcA: theory supports carbanion transfer to Hg(II).” Inorg. Chem. 53(2): 772– 777. [DOI:10.1021/ic401992y]
  10. Dong, W., Y. Bian, L. Liang,  and  B. Gu. 2011.  “Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique.” Environ. Sci. Technol. 45: 3576–3583. [DOI:10.1021/es104207g]
  11. Dong, W., L. Liang, S. Brooks, G. Southworth,  and B. Gu. 2010. “Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee.” Environ. Chem. 7(1): 94–102. [DOI:10.1071/EN09091]
  12. Vishnivetskaya,  T. A., J. J. Mosher, A. V. Palumbo,  Z. K. Yang, M. Podar, S. D. Brown, S. C. Brooks, B. Gu, G. R. Southworth, M. M. Drake, C. C. Brandt, and D. A. Elias. 2011. “Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams.” Appl. Environ. Microbiol. 77 (1): 302–311. [DOI:10.1128/ AEM.01715-10]
  13. Porat, I., T. A. Vishnivetskaya, J. J. Mosher, C. C. Brandt, Z. K. Yang, S. C. Brooks, L. Liang, M. M. Drake, M. Podar,  S. D. Brown, and A. V. Palumbo. 2010. “Characterization of archaeal community in contaminated and uncontaminated surface stream sediments.” Microb. Ecol. 60: 784–795. [DOI: 10.1007/s00248-010-9734-2]
  14. Mosher,  J. J., T. A. Vishnivetskaya, D. A. Elias, M. Podar, S. C. Brooks, S. D. Brown, C. C. Brandt, and A. V. Palumbo. 2012. “Characterization of the Deltaproteobacteria in contaminated and uncontaminated stream sediments and identification of potential mercury methylators.” Aquat. Microb. Ecol. 66: 271–282. [DOI:10.3354/ame01563]
  15. Hu, H., H. Lin, W. Zheng, B. Rao, X. B. Feng, L. Liang, D. A. Elias, and B. Gu. 2013. “Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA.” Environ. Sci. Technol.47: 10922–10930. [DOI:10.1021/ es400527m]
  16. Lin, H., J. L. Morrell-Falvey, B. Rao, L. Liang, and B. Gu. 2014. “Coupled mercury-cell sorption, reduction, and oxidation affecting methylmercury production  by Geobacter sulfurreducens PCA.” Environ. Sci. Technol. 48(20): 11969–11976. [DOI:10.1021/es502537a]
  17. Schaefer,  J. K., S. S. Rocks, W. Zheng,  L. Liang, B. Gu, and F. M. M. Morel. 2011. “Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria.” Proc. Natl. Acad. Sci. USA 108(21): 8714–8719. [DOI:10.1073/ pnas.1105781108]
  18. He, F., W. Zhao, L. Liang, and B. Gu. 2014. “Photochemical oxidation of dissolved elemental mercury by carbonate radicals in water.” Environ. Sci. Technol. Lett. 1(12): 499– 503. [DOI:10.1021/ez500322f ]
  19. He, F., W. Zheng, L. Liang, and B. Gu. 2012. “Mercury photolytic transformation affected by low-molecular-weight natural  organics  in water.” Sci. Total Environ. 416: 429–435. [DOI:10.1016/j.scitotenv.2011.11.081]
  20. Qian,  Y., X. Yin, H. Lin, B. Rao, S. Brooks, L. Liang, and B. Gu. 2014. “Why dissolved organic matter enhances photodegradation of methylmercury.”  Environ. Sci. Technol. Lett. 1: 426–431.
  21. Vazquez-Rodriguez,  A. I., C. M. Hansel, T. Zhang, C. H. Lamborg, C. M. Santelli, S. M. Webb, and S. Brooks. 2015. “Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury.” Front. Microbiol 6:1–11.  [DOI:10.3389/ fmicb.2015.00596]
  22. Liu, Y., R. Yu, Y. Zheng, and J. He. 2014. “Analysis of the microbial community structure by monitoring a Hg meth ylation gene (hgcA) in paddy soils along a Hg gradient.” Appl. Environ. Microbiol. 80(9): 2874–2879.
  23. Schaefer, J. K., R. M. Kronberg,  F. M. M. Morel, and U. Skyllberg. 2014. “Detection of a key Hg methylation gene, hgcA, in wetland  soils.” Environ. Microbiol. Rep. 6(5): 441–447. [DOI:10.1111/1758-2229.12136]
  24. Bae, H.-S., F. E. Dierberg, and A. Ogram. 2014. “Synthrophs dominate sequences associated with the mercury methylation–related gene hgcA in the water conservation areas of the Florida Everglades.” Appl. Envi­ ron. Microbiol. 80(20): 6517–6526. [DOI:10.1128/ aem.01666-14]
  25. Smith, S. D., R. Bridou, A. Johs, J. M. Parks, D. A. Elias, R. A. Hurt Jr., S. D. Brown, M. Podar, and J. D. Wall. 2015. “Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation.” Appl. Environ. Microbiol. 81: 3205–3217.
  26. Hong,  L., M. A. Sharp, S. Poblete,  R. Biehl, M. Zamponi, N. Szekely, M.-S. Appavou, R. G. Winkler, R. Nauss, A. Johs, J. M. Parks,  Z. Yi, X. Cheng, L. Liang, M. Ohl, S. M. Miller, D. Richter, G. Gompper, and J. C. Smith.  2014. “Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase.” Biophys. J. 107(2): 393–400.
  27. Lian, P., H.-B. Guo, D. Riccardi, A. Dong, J. M. Parks, Q. Xu, E. Pai, S. M. Miller, D.-Q. Wei, J. C. Smith, and H. Guo. 2014. “X-ray structure  of a Hg2+ complex of mercuric reductase (MerA) and QM/MM study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs.” Biochemistry 53: 7211–7222.
  28. Riccardi, D., J. M. Parks, A. Johs, and J. C. Smith. 2015. “HackaMol: an object-oriented Modern Perl library for molecular hacking on multiple scales.” J. Chem. Inform. Model. 55: 721–726.
  29. UNEP. 2013. “Global mercury assessment 2013: Sources, emissions, releases and environmental transport.” UNEP Chemicals Branch, Geneva, Switzerland.
  30. Krabbenhoft, D. P., and E. M. Sunderland. 2013. “Global change and mercury.” Science 341(6153): 1457–1458. [DOI:10.1126/science.1242838]

 

 

The ORNL Mercury SFA is sponsored by the Subsurface Biogeochemical Research (SBR) program within the U.S. Department of Energy's Office of Biological and Environmental Research.